博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
数据比赛实现的细节
阅读量:4952 次
发布时间:2019-06-11

本文共 633 字,大约阅读时间需要 2 分钟。

  • workflow & pipeline 的设计;

0. 数据预处理

  • 降维:
    • PCA;
  • 图像预处理
    • 去均值,归一化(缩放在 (0, 1) 之间),imresize;

1. 机器学习方法

  • 尤其是图像问题,对特征提取方法提取特征的质量依赖较高;
    • 也即特征工程,这里给出一些先验的特征提取方法:
      • scene classification:bag of visual words,比如 restaurant 对应的 words:椅子,吧台,桌子等这些即为 visual words;
  • 参数优化:

2. 深度学习方法

  • 考虑到最终实现的效率问题:
    • 使用 transfer learning,使用在 ImageNet 等大型数据集上已训练好的大型深度神经网络模型;也即 fine-tune a pre-trained model(transfer learning),使用转移学习对已训练好的模型进行 fine-tune 尤其适用于仅有中等规模的数据集(medium amounts of data),此外还有训练时间的考虑。自然,如果数据集规模很大,时间较为充沛,可考虑自己设计深度神经网络模型以及对本地数据进行训练;
    • 且从头到尾训练一个深度神经网络,对于小规模的数据集还容易造成,过拟合问题;
    • 模型所在的位置:

3. 模型调优

  • 不断地改变参数,有时为了最终的比赛结果宁可牺牲效率;

转载于:https://www.cnblogs.com/mtcnn/p/9421478.html

你可能感兴趣的文章
手机抓包-手机劫持域名到指定服务器
查看>>
被放逐的皇后 金建云
查看>>
Javascript 有用参考函数
查看>>
点群的判别(三)
查看>>
GNSS 使用DFT算法 能量损耗仿真
查看>>
网页抓取 总结
查看>>
【转】Simulink模型架构指导
查看>>
MYSQL数据库的导出的几种方法
查看>>
SQL Server-5种常见的约束
查看>>
硬件之美
查看>>
[转载]java开发中的23种设计模式
查看>>
表格的拖拽功能
查看>>
函数的形参和实参
查看>>
文字过长 用 ... 表示 CSS实现单行、多行文本溢出显示省略号
查看>>
1Caesar加密
查看>>
【TP SRM 703 div2 500】 GCDGraph
查看>>
MapReduce 重要组件——Recordreader组件 [转]
查看>>
webdriver api
查看>>
转载-FileZilla Server源码分析(1)
查看>>
apache 实现图标缓存客户端
查看>>